高エネルギーイオンビームによる薄膜の分析 No.98029

キーワード:高エネルギーイオンビーム、RBS分析、積層薄膜、化合物薄膜 概要

当研究所に設置されている高エネルギーマ イクロビーム複合分析装置(㈱神戸製鋼所製) は、高エネルギーのHe またはHのイオンビー ムを試料に照射して種々の分析を行う装置で、 入射イオン種と出力信号との組み合わせで、 RBS(ラザフォード後方散乱分光:元素・組成

分析、深さ方向分析)

PIXE(粒子線励起X線放出:高感度元素分析) Channeling(結晶性評価)

ERDA(弾性反跳粒子検出法:表面水素含有量) の四つの分析機能を持っております。また、ビ ームをμm まで絞ることができ、二次電子像を 見ながら局所分析も可能です。

ここでは、高エネルギーイオンビームを用い た RBS 法が、薄膜・表面の分析に適している ことを示すとともに、実際に本装置で行った2、 3の分析例について述べます。

RBS分析

百万電子ボルト(MeV)程度のエネルギーを 持つ軽元素(H,He)のイオンビームと固体と の相互作用は、固体内原子核との弾性散乱およ び固体中の電子雲との非弾性散乱による入射 イオンのエネルギー損失だけで説明され、取り 扱いが非常に簡単になります。

具体的には、弾性散乱で、固体の原子核に跳 ね返された He 原子のエネルギーは、相手の原 子核の質量及び散乱角に依存するので、散乱角 を固定して、散乱原子(He)のエネルギース ペクトルを測定することにより相手元素の質 量がわかり、元素を同定することができます。 さらに試料表面から、ある深さのところで散乱 される He 原子は、入射 / 出射時の非弾性衝突 によりエネルギー損失を受け、その大きさが相 手原子の深さに依存するため、深さ方向の情報 が得られます。

主な分析条件を下表に示します。

イオン種	H e ⁺
加速エネルギー	950KeV
照射電荷量	500 ~ 1000 n C
ビーム径	1 m m

膜厚によるスペクトルの変化

図1にスパッタ法で作製した膜厚の異なる Au 薄膜の測定結果を示します。以降各図の横 軸は後方散乱された He 原子のエネルギー、縦 軸はそのエネルギーにおけるHe原子の収量を 表しています。先に述べたように膜厚の変化が スペクトルの幅に現れていることがわかりま す。実際には、スペクトルの幅と高さは、膜密 度と膜厚の積に関係します。逆に考えれば、膜 厚が既知であれば、薄膜の密度を推定すること ができるということです。

積層薄膜の分析

図2にAgとCuの積層薄膜の分析結果を示 します。(a)は、上層から Cu/Ag/基板という 構成、(b)は、上層から Ag/Cu/基板という構 成のものです。図中、Ag、Cu で示したライン は、薄膜表面にその元素が存在するときの

エネルギー位置を表しています。(a)では上 層のCuのプロファイルの上に、下層のAgの プロファイルが重なって検出されています。こ れは、Cu薄膜中を通過した He 原子がエネル ギー損失を受けた後、Ag によって散乱されて いるので、Ag の検出位置が表面にある Cu よ りも低エネルギー側に現れるからです。(b) では、質量数の大きい Ag が上層にあるためス ペクトルに(a)のような重なりが起こらず独 立に検出されています。それぞれの図中の膜厚 は、シミュレーションにより決定した値で、積 層薄膜の下層についても非破壊で膜厚の推定 ができます。また、(b)については、シミュ レーションプロファイルとの違いから、Ag/Cu 界面での相互拡散が予想されます。

化合物薄膜の組成分析

化合物薄膜の場合には、構成元素のそれぞれ について、独立な事象として考えられるので、 膜密度と膜厚が判明していれば、組成比を決定 できます。図3は、RBS測定により、Si基板 上のSi_xNy薄膜の組成を決定した例です。実測 膜厚120nm、密度3.1gr/cm³を既知として組成 比のみを変えてシミュレーションを行い、図の ように測定結果と一致させることにより組成 比を決定できます。

用途

以上のように、高エネルギーイオンビームを 用いた分析手法を薄膜材料に応用した場合、薄 膜の厚さが、帯状に拡がったエネルギースペク トルの幅に対応し、元素の違いはスペクトルの

エネルギー位置の違いとして現れるので、多層 薄膜や積層構造の場合でも、1回の照射で測定 できる利点があります。また、通常の深さ方向 分析のように、スパッタする必要もなく、非破 壊で比較的短時間に分析することが可能です。

本装置の場合は、950keVの入射エネルギー を用いておりますので、表面から約1µmの深 さまでの分析が可能です。対象元素はLi以上 で、基本的には基板材料(母材)は問いません。 高エネルギーイオン照射のためチャージアッ プの問題もほとんどありませんので、導電体か ら絶縁体材料にいたるまで、幅広く利用できま す。また、対象とする薄膜の構成が予測される 場合は、シミュレーションにより必要とする情 報が実際の分析で得られるかどうかの判断も できます。従って、この様な高エネルギーイオ ンビームを用いる分析手法は、種々の分野での 表面層分析に応用可能だと思われます。

作成者 材料技術部 薄膜材料グループ 岡本昭夫 Phone:0725-51-2668 発行日 1998 年 10 月 30 日