

Technical Sheet

No.17-17

波長分散型蛍光 X線分析の特徴とその応用

キーワード:波長分散型蛍光X線分析、妨害ピーク、コンプトン散乱

はじめに

蛍光X線分析は、X線管で発生した励起X線を 分析試料に照射し、試料から発生する蛍光X線の 波長(エネルギー)を測定することにより、BからUま での元素を分析する方法です。試料の前処理なし に、また試料を破壊することなく、迅速かつ高感度 に測定が行えます^{1,2)}。

蛍光X線分析装置は、蛍光X線の波長(エネル ギー)を分析する手法によって、エネルギー分散型 (EDX)と波長分散型(WDX)の2種類に分けられま す。EDXが半導体検出器を利用して多元素を同時 に測定するのに対して、WDXは分光結晶により、 各元素ごとに分光して測定できるため、波長分解 能に優れ、微量元素の検出に適しています。

当所に設置されているリガク製波長分散型蛍光 X線分析装置PrimusIIは、上記WDXの特徴を生か して、未知試料の簡易分析(スクリーニング)、腐 食・変色に伴う表面の解析、異物・混入物の由来 の推定など多くの依頼試験に利用されています。

蛍光X線の測定において、常に問題となるのは 測定する元素に重なる妨害ピークの存在です。測 定したいX線ピークと同じ位置に妨害ピークが重な る場合、検出元素を誤って判断することになります。 妨害ピークは発生原因によって、サムピーク、エス ケープピーク、他の含有元素による妨害、およびコ ンプトン散乱などに分けられます。サムピークとエス ケープピークは、X線と検出器の相互作用による擬 似ピークで、EDX測定では直接的にピークとして現 れます。一方、WDX測定では特に問題とはなりま せん。

本稿では、WDX測定の特徴を利用した妨害ピー クの対策およびコンプトン散乱線を利用した主成分 の推定についてご紹介いたします。

他の含有元素による妨害ピークの対策

表面処理が施されていない亜鉛合金では、容易 に腐食が生じます。また、腐食促進因子としてClや Naの存在がよく問題になります。しかし、蛍光X線 での測定にあたりNa Kαのピークは母材に含まれる Zn LαおよびLβ1ピークによる妨害を受けます。 そこで、NaおよびZn標準試料を作製し、EDXお よびWDXを用いて測定し、それぞれから得られる NaとZnのピークを調べました。

EDX測定では標準試料としてリガク製のマイクロ キャリーろ紙に、Zn標準液(1mg/mL)50µLに対して Na標準液(1mg/mL)を30µL滴下し、乾燥したもの を用いました。図1にEDX測定した結果を示します。

EDX測定では、Na K**G**は1.041keV、Zn L**G**は 1.012keVの位置にピークが現れますが、本結果か ら、両ピークを分離することはできていない事がわ かります。

WDX測定では標準試料としてマイクロキャリーろ 紙に、Zn標準液(1mg/mL)50µLに対してNa標準液 (1mg/mL)を段階的に0µL, 10µL, 20µL, 30µL 滴

地方独立行政法人 大阪産業技術研究所 本部・和泉センター http://orist.jp/ 下したものを用い、乾燥後、測定しました。

図2にNaとZnのピークをWDX測定した結果を示 します(分光結晶:RX25)。EDX分析の横軸は蛍光 X線のエネルギー(keV)を示し、右に行くほどエネ ルギーは大きくなります。一方、WDX測定の横軸2 θは分光結晶の角度であり、右に行くほどエネルギ ーは小さくなるため、EDXとWDXではNa KaとZn La のピーク位置関係が逆になっています。

EDXでは分離の難しいNa KaのピークとZn Laの ピークも、WDX測定でははっきりとピーク分離がで き、定性分析の解析が容易なことがわかります。な お、Na Kaのピーク位置には他にもZn Lβ1のピーク が重なります。そのため、Naが含有されていないZn 試料でもZn Lβ1のピークは検出されますが、Naの 含有量とともに低角度側にシフトするため、Naの有 無が判断できます。

WDX 測定においてもっとも問題となるのは、試料 の主成分元素のピークが測定したい元素ピークに 重なることによる妨害です。表1に他元素の妨害の 例をいくつか示します。

表1. 他元素の妨害の例(分光結晶:角度)

分析ピーク	妨害ピーク
Mn K a (LiF:62.950°)	Cr K β 1(LiF:62.340°)
As K a (LiF:33.980°)	Pb L a (LiF:33.915°)
S K \mathbf{a} (Ge:110.820 $^{\circ}$)	Mo L a (Ge:111.860°)

Mn KaのピークはかろうじてCr Kβ1と分離してい ますので、微量のMnを測定するのでないかぎり、検 出することができます。しかし、As KaはPb Laと重な るため、Pbを多く含む試料の分析ではAs Kβ1を測 定するなどの工夫が必要です。

S KaはMo Laの妨害を受けますので、Moを多く 含有する試料では要注意です。また、X線管がMo ターゲットである場合には、励起X線にMo Laが含 まれるため、一次フィルターを使用して励起X線の Mo Laを低減させることが必要です。

コンプトン散乱を利用した主成分の推定

コンプトン散乱は、X線管から発生する励起X線に 付随して現れます。散乱線はもちろん測定の妨害 ピークとなりえますが、とくにC、Oに対して感度が高 いため、散乱線を分析に応用しようという試みも多く なされています³⁾。

Rhターゲットによる励起X線を試料に照射します と、X線は弾性散乱(トムソン散乱)されて、Rh K**a**は LiF分光結晶の17.5°の位置に、また、Rh K**β**は 15.6°に現れます。また、一部のX線は非弾性散 乱(コンプトン散乱)され、エネルギーを一部失って、 弾性散乱線よりも少し波長の長い(エネルギーの小 さい)位置に現れます。散乱線はRh Kaのピークより ブロードであり、その強度は試料の構成元素の原 子番号が高いほど弱く、近似的に質量吸収係数に 反比例します。

図3に、ステンレス鋼(SUS304)、アルミニウム合 金(6063)、ガラス(SiO₂)、黒鉛、ポリプロピレンの各 種材料のコンプトン散乱を測定した結果を示します。 高分子や黒鉛のようなC、Oなどの元素が主成分の 物質においては、コンプトン散乱強度がRhの蛍光 X線の強度よりも強くなっています。一方、ステンレ ス鋼などの金属試料ではコンプトン散乱強度は相 対的に弱くなっています。Rhのピークとそのコンプト ン散乱を比較することにより、試料の主成分におけ るC、Oの推定が可能となります。

図3. 各種材料のコンプトン散乱強度

おわりに

本装置は、BからUまでの元素の分析が迅速か つ高感度に行えます。また、波長分散型の特徴を 利用して、各ピークの波長を分離することにより、詳 細な分析が可能となります。

蛍光X線分析の長所は、試料の前処理なしに非 破壊で測定できる点です。クレーム品など大きさや 量に制限のある試料であっても、測定者の要望に 応じた詳細なデータを得ることができます。依頼試 験、共同受託研究などで対応いたしますので、お 気軽にご相談ください。

参考文献

 山内尚彦:テクニカルシート No.10005, (2010).
河野久征:蛍光X線分析 基礎と応用, (2011), リガク.

3) 宇井倬二, 片岡正宏, 加藤正直, 浅田栄一: 分析 化学, vol. 37 (1988) No. 10.

